
VPPD-02870 / AN1007

Revision 1.8

March 2015 Vitesse Proprietary and Confidential

Vitesse API Software

Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 2 of 29

Vitesse

www.vitesse.com

Vitesse Semiconductor Corporation (“Vitesse”) retains the right to make changes to its

products or specifications to improve performance, reliability or manufacturability. All

information in this document, including descriptions of features, functions,

performance, technical specifications and availability, is subject to change without

notice at any time. While the information furnished herein is held to be accurate and

reliable, no responsibility will be assumed by Vitesse for its use. Furthermore, the

information contained herein does not convey to the purchaser of microelectronic

devices any license under the patent right of any manufacturer.

Vitesse products are not intended for use in life support products where failure of a

Vitesse product could reasonably be expected to result in death or personal injury.

Anyone using a Vitesse product in such an application without express written consent

of an officer of Vitesse does so at their own risk, and agrees to fully indemnify Vitesse

for any damages that may result from such use or sale.

Safety of Laser Products, IEC 60825. While Vitesse products support IEC 60825, use of

Vitesse products does not ensure compliance to IEC 60825. Buyers are responsible for

ensuring compliance to IEC 60825. Buyers must fully indemnify Vitesse for any

damages resulting from non-compliance to IEC 60825.

Vitesse Semiconductor Corporation is a registered trademark. All other products or

service names used in this publication are for identification purposes only, and may be

trademarks or registered trademarks of their respective companies. All other

trademarks or registered trademarks mentioned herein are the property of their

respective holders.

Copyright © 2015 Vitesse Semiconductor Corporation

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 3 of 29

TERMS OF USE

The information provided by Vitesse Semiconductor Corporation (“Vitesse”) in this

document pursuant to these terms (“Agreement”) is intended for illustrative purposes

only. All information provided herein is subject to change at any time without notice.

The information provided, including but not limited to Sample Code (“Software”), is

protected by United States and other applicable copyright laws and international

treaties. Vitesse does not grant You any license, explicitly or implicitly, under any

trademark, patent, copyright, mask work protection right, trade secret or any other

intellectual property right.

ALL INFORMATION, INCLUDING BUT NOT LIMITED TO THE SAMPLE CODE (“CODE ”)

SUPPLIED, IS PROVIDED STRICTLY “AS-IS” WITH NO WARRANTIES OF ANY KIND,

EXPRESS, IMPLIED OR STATUTORY, MADE WITH RESPECT TO THE INFORMATION TO

INCLUDE THE CODE AND ALL ACCOMPANYING WRITTEN MATERIALS, INCLUDING BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. YOU ASSUME THE ENTIRE

RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE INFORMATION,

AND YOU ASSUME ANY AND ALL RISK AND LIABILITY FOR ANY ACTIONS TAKEN BY

YOU ON THE BASIS OF ITS ANALYSIS OR OTHER USE OF THE INFORMATION,

INCLUDING BUT NOT LIMITED TO MODIFICATIONS TO YOUR PRODUCTS IN LIGHT OF

SUCH USE OF INFORMATION, AND YOU HEREBY ACKNOWLEDGE THAT VITESSE

SHALL HAVE NO RESPONSIBILITY OR LIABILITY AS A RESULT OF YOUR USE OF

INFORMATION PROVIDED HEREUNDER.

IN NO EVENT SHALL VITESSE BE LIABLE FOR ANY DAMAGES WHATSOEVER

(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,

BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY

LOSS) ARISING OUT OF USE OR INABILITY TO USE THE CODE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

This Agreement is governed by the laws of the State of California, without regard to

principles of conflicts of laws. Each provision of this Agreement is severable. If a

provision is found to be unenforceable, this finding does not affect the enforceability of

the remaining provisions of this Agreement. This Agreement is binding on successors

and assigns. By accessing the information contained in or referenced by this

document, You acknowledge that You have read this Agreement, that You understand

it, that You agree to be bound by its terms, and that this is the complete and exclusive

statement of the Agreement between You and Vitesse regarding the information and

Code.

Copyright © 2015 Vitesse Semiconductor Corporation

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 4 of 29

Contents

1 Introduction .. 6

2 Overview ... 6

2.1 Applications .. 6

2.2 API Architecture .. 6

2.3 Directory Structure .. 7

2.4 Targets ... 8

2.5 Instance References ... 9

2.6 Initialization ... 10

2.7 API Protection .. 11

2.8 OS Layer ... 11

2.9 Trace Layer .. 11

2.10 Recommended API calling sequence .. 11

2.11 Checklist for API configuration .. 12

2.12 Sample API Demo Applications ... 12

3 Product Families ... 13

3.1 1GE PHY Family .. 13

3.1.1 PHY Applications .. 13

3.1.2 PHY Initialization ... 13

3.1.3 PHY Control after Initialization ... 14

3.1.4 PHY API Documentation .. 14

3.1.5 PHY Debug Print Functions .. 14

3.2 10G PHY Family .. 14

3.3 Switch Families... 15

3.4 OTN Mapper Families .. 15

4 Function Groups .. 18

4.1 Initialization ... 18

4.2 Miscellaneous ... 18

4.3 Port Control ... 18

4.4 Quality of Service ... 19

4.5 Packet Control .. 19

4.6 Security ... 20

4.7 Layer 2 .. 20

4.8 EVC .. 20

4.9 Synchronization .. 20

4.10 Time Stamping ... 21

4.11 OTN Mapper Layers (OTN Mappers Only) ... 21

5 Application Examples .. 22

5.1 Platforms ... 22

5.2 Switch Application Functionality .. 23

5.3 PHY Application Functionality .. 23

5.4 OTN Mapper Application Functionality .. 24

5.4.1 Port and Channel Numbering ... 24

5.4.2 Register Access ... 25

6 Linux Support .. 27

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 5 of 29

6.1 External CPU configuration ... 27

6.2 Internal CPU configuration ... 27

7 Porting Guide .. 28

7.1 Board Support Package ... 28

7.2 Build System .. 28

7.3 OS Layer ... 28

7.4 Register Access .. 28

7.5 API Protection .. 28

7.6 Trace Layer .. 28

7.7 Application ... 29

Figures

Figure 1. Vitesse API Applications ... 6

Figure 2. Vitesse API Architecture ... 7

Figure 3. Instance References ... 10

Figure 4. PHY Applications .. 13

Figure 5. 10G PHY Applications .. 15

Figure 6. VSC7460 Jaguar-1 Application ... 15

Figure 7. VSC8492 Daytona Application .. 16

Figure 8. Talladega API .. 17

Figure 9. Daytona and Talladega Channels and Ports ... 25

Tables

Table 1. Directory Structure .. 7

Table 2. API Targets .. 8

Table 3. Application Example Platforms ... 22

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 6 of 29

1 Introduction
The Vitesse unified Application Programming Interface (API) provides a

comprehensive, user friendly, and robust function library that supports all Vitesse

Ethernet switch, PHY, and Optical Transport Network (OTN) Mapper products. The

unified API is portable to any Operating System (OS) and was developed with 32-bit

and 64-bit CPUs as intended targets. The driver software was developed in standard C

and supports multi-instance device targets. This document explains the code structure

and porting process along with application examples to assist in rapid development

and system deployment.

Additional application notes, device collateral, and API release notes are available on

the Vitesse website at www.vitesse.com.

2 Overview

2.1 Applications

The Vitesse API provides portable driver software for Vitesse switch, PHY, and OTN

Mapper products. It can be used as a basis for application software solutions such as

the following.

• Vitesse application software used for production and demonstration

• Third party application software provided by a partner company

• Customer application software developed by customers using the Vitesse API

Figure 1. Vitesse API Applications

2.2 API Architecture

The API Architecture consists of the following layers.

• Application Interface Layer provides a C interface to the application layer.

Functions are arranged in groups.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 7 of 29

• Chip Interface Layer maps function parameters to chip-specific register

accesses.

• I/O Layer provides register access. This layer is platform dependent and is

implemented outside the API.

• OS Layer adapts the API to a given OS.

• Trace Layer maps code trace macros for debugging purposes.

Figure 2. Vitesse API Architecture

2.3 Directory Structure

The following table shows the subdirectories into which the API source is organized.

The source code includes application example code in a separate directory.

Table 1. Directory Structure

Directory Description

vtss_api/doc Automatically generated documentation of the public header files. The
directory includes a document for each product family.

vtss_api/include Public (external) header files. The application must include only
vtss_api.h, which includes all other required header files.

vtss_api/base API implementation and private (internal) header files arranged in a
number of sub-directories. The application build system (e.g.,
Makefile) should compile all C files in this directory, including sub-
directories.

vtss_api/boards Reference implementations of board specific code. Used by the Linux
kernel module example.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 8 of 29

Directory Description

vtss_api/appl Application example implementations, running mainly as userspace
Linux applications.

vtss_api/linux_support Contain example user-mode IO (UIO) Linux drivers for supporting
running the switch API on external CPU systems via PCIe etc.

2.4 Targets

The API must be compiled for one or more target chips by defining one or more of the

symbols in the following table. This selection has the following effects:

• The external header files will include the functions and data types supported

by the selected targets.

• The Application Interface Layer will include the functions supported by the

selected targets.

• The Chip Interface Layer will be included for the selected targets.

The VTSS_CHIP_CU_PHY target may be used when compiling the API for a PHY-only

application.

When compiling the API for switch, MAC, or OTN Mapper targets, the PHY part is

always included. For example, if the VTSS_CHIP_JAGUAR_1 target is selected, PHYs

connected to the MII management controller of the switch chip can be controlled using

the PHY portion of the API.

Table 2. API Targets

Target Part Number

VTSS_CHIP_CU_PHY VSC8211 VSC8641

VSC8221 VSC8664

VSC8224 VSC8502

VSC8234 VSC8504

VSC8244 VSC8514

VSC8512 VSC8552

VSC8522 VSC8572

VSC8538 VSC8574

VSC8558 VSC8582

VSC8601 VSC8584

VSC8634

VTSS_CHIP_10G_PHY VSC8256 VSC8487-15

VSC8257 VSC8488-15

VSC8258 VSC8489

VSC8484 VSC8490

VSC8486 VSC8491

VSC8488

VTSS_CHIP_SPARX_III_11 VSC7414

VTSS_CHIP_SERVAL_LITE VSC7416

VTSS_CHIP_SERVAL VSC7418

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 9 of 29

Target Part Number

VTSS_CHIP_SPARX_III_10_UM VSC7420

VTSS_CHIP_SPARX_III_17_UM VSC7421

VTSS_CHIP_SPARX_III_25_UM VSC7422

VTSS_CHIP_CARACAL_LITE VSC7423

VTSS_CHIP_SPARX_III_10 VSC7424

VTSS_CHIP_SPARX_III_18 VSC7425

VTSS_CHIP_SPARX_III_24 VSC7426

VTSS_CHIP_SPARX_III_26 VSC7427

VTSS_CHIP_CARACAL_1 VSC7428

VTSS_CHIP_CARACAL_2 VSC7429

VTSS_CHIP_E_STAX_III_48 VSC7432

VTSS_CHIP_E_STAX_III_24_DUAL Dual VSC7431

VTSS_CHIP_E_STAX_III_68 VSC7434

VTSS_CHIP_E_STAX_III_68_DUAL Dual VSC7434

VTSS_CHIP_SERVAL_2 VSC7438

VTSS_CHIP_SPARX_IV_52 VSC7442

VTSS_CHIP_SPARX_IV_44 VSC7444

VTSS_CHIP_SPARX_IV_80 VSC7448

VTSS_CHIP_LYNX_1 VSC7462

VTSS_CHIP_JAGUAR_1 VSC7460

VTSS_CHIP_LYNX_2 VSC7464

VTSS_CHIP_JAGUAR_2 VSC7468

VTSS_CHIP_DAYTONA VSC8492

VTSS_CHIP_TALLADEGA VSC8494

2.5 Instance References

The API supports control of multiple target instances from one application. To facilitate

this, the API provides a create function, vtss_inst_create, which must be called for

each target instance during initialization. The create function returns an instance

reference that must be used for subsequent API calls on the same target.

For applications controlling a single target instance, the create function may be called

with a NULL instance reference pointer and subsequent API calls on the target may

use a NULL instance reference.

The following illustration shows how the instance references are used to select target

instances for an application controlling a Jaguar-1 switch and a Serval-1 switch, both

of which control multiple PHYs. The API internally associates a state block with each

created target. In the figure, interface call references are indicated using numbers.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 10 of 29

1. The first instance created is the Jaguar-1 target. Subsequent API function calls

using the returned instance reference are directed to the Jaguar-1 chip for

switch and PHY control.

2. The second instance created is the Serval-1 target. Subsequent API function

calls using the returned instance reference are directed to the Serval-1 chip for

switch and PHY control.

Figure 3. Instance References

2.6 Initialization

The following initialization sequence must be used for each target instance controlled

by the application. Note the differences between switch and OTN Mapper targets as

compared to PHY-only targets. The application example includes initialization code

demonstrating this sequence.

1. Create a target instance using vtss_inst_get and vtss_inst_create.

2. Initialize a target instance using vtss_init_conf_get and

vtss_init_conf_set.

a. For switch and OTN Mapper targets, register read/write callback functions

must be provided by the application.

b. For PHY-only targets, MII management read/write callback functions must

be provided by the application.

3. For switch targets, set up the port map table using vtss_port_map_set.

When the sequence has been completed, the application can start controlling ports,

Quality of Service (QoS), and other functions on the target.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 11 of 29

2.7 API Protection

The API functions are not reentrant due to an internal state in the targets and the API.

To protect API accesses for multi-threaded applications, two callback functions must

be implemented by the application using a semaphore.

• vtss_callout_lock This function is called by the API when entering an API

function.

• vtss_callout_unlock This function is called by the API when exiting an API

function.

For single-threaded applications, these functions may be left empty.

2.8 OS Layer

The OS layer implements timer functions required by the API.

An OS-specific header file is needed for each OS type. The API supports Linux and

eCos, but can be extended to support any OS with basic timer functionality.

The OS-specific header defines the following entities:

• vtss_mtimer_t(typedef) Data type used to implement timers.

• VTSS_NSLEEP(nsec) Macro to sleep for nsec nanoseconds.

• VTSS_MSLEEP(msec) Macro to sleep for msec microseconds.

• VTSS_MTIMER_START(timer, msec) Macro to start a timer by initializing

the timeout to msec microseconds, where timer is a variable declared of the

type vtss_mtimer_t. If the timer has already been started it must be

restarted with the new timeout value.

• VTSS_MTIMER_TIMEOUT(timer) Macro used to determine if the timer,

timer, has expired, where timer is a variable declared of type vtss_mtimer_t.

2.9 Trace Layer

The API code includes trace macros, in the style of the C function printf, for debugging

and troubleshooting. The application must implement the following callback function

for mapping the trace macros:

1. vtss_callout_trace_printf Print or log a trace message.

2. vtss_callout_trace_hex_dump Print or log a dump of data in hexadecimal.

The trace macros are organized in groups with levels that may be changed at run-

time. By default, only the error trace is enabled.

The trace system may be disabled by setting VTSS_OPT_TRACE to zero at compile-

time. The callback function must not be implemented if trace is disabled.

2.10 Recommended API calling sequence

The following general sequence is recommended to be used by anyone using the PHY

API. This sequence will help prevent the passing of structures from the application to

the PHY API with uninitialized or incorrectly initialized variables. In general, the PHY

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 12 of 29

API does not perform boundary checking of elements within a given structure passed

into the API.

1. Declare the structure to be passed into the PHY API.

2. Initialize all parameters in the declared structure to 0 using memset or

equivalent OS function.

3. If the PHY API has a “get” function, execute the “get” function call so that the

structure that was previously declared and passed in gets set to the existing

values in the PHY API. Example: vtss_init_conf_get

4. Modify only the values within the structure where a change is desired.

5. The PHY API has “set” functions, execute the “set” function call so that the

structure passed in gets set in the Hardware configuration registers by the PHY

API. Example: vtss_init_conf_set

Performing the above sequence will minimize issues that can be caused by either

uninitialized elements or incorrect default settings for elements within any given data

structure passed into the PHY API.

2.11 Checklist for API configuration

The following items are suggested areas that a user porting the PHY API may want to

pay additional attention. Some initializations can be done on the compilation line.

1. Initialize VTSS_OPT_PORT_COUNT macro, Ex: -DVTSS_OPT_PORT_COUNT=4

2. Initialize Operating System type, Ex: -DVTSS_OPSYS_LINUX=1

3. Initialize for PHY Chip Type, Ex: -DVTSS_CHIP_CU_PHY

4. Initialize the VTSS_MSLEEP macro properly

2.12 Sample API Demo Applications

Demo applications for the PHY API can be found in the vtss_api/appl directory.

vtss_appl_cu_phy.c - Sample Demo program for 1G PHY

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 13 of 29

3 Product Families
This section briefly describes the API functionality for each product family.

3.1 1GE PHY Family

The 1G PHY family includes products listed for VTSS_CHIP_CU_PHY in the API Targets

table.

3.1.1 PHY Applications

The API supports a number of Vitesse PHY products. Each chip may include multiple

PHYs (ports). For each target instance, the individual PHYs are identified using a port

number. The following illustration shows two PHY applications:

1. One single PHY connected to a MAC inside a CPU. Both the MAC interface and

the MII Management interface of the PHY are connected to the CPU.

2. Three octal PHYs connected to a VTSS switch chip. Both the MAC interfaces

and the MII management interfaces of the PHYs are connected to the switch

chip.

The API contains examples of both application types described in the Application

Examples section.

Figure 4. PHY Applications

3.1.2 PHY Initialization

PHY initialization is performed in steps.

1. Initialize the chip by calling the vtss_phy_pre_reset function. This will

perform initialization needed for the entire chip (e.g., load the internal 8051

CPU). The vtss_phy_pre_reset function MUST be called with the lowest PHY

(port) number within the chip.

2. Initialize each PHY within the chip by calling the vtss_phy_reset function for

each PHY (port).

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 14 of 29

3. Startup the chip by calling the vtss_phy_post_reset function. This will

perform setup of the chip which is needed after the first time that all PHYs

within the chip have been reset (e.g., set the coma pin). The

vtss_phy_post_reset function can be called with any PHY (port) number

within the chip.

3.1.3 PHY Control after Initialization

After the main initialization, the normal PHY control sequence for each port is as

follows:

1. Configure the PHY using vtss_phy_conf_set.

2. Periodically poll the PHY status to detect link change events:

a. For PHY-only applications, use vtss_phy_status_get

b. For switch applications, use vtss_port_status_get

3. If link state events are detected, the application must take appropriate action.

If auto-negotiation is enabled, the switch must normally be configured on link-

up events, such as speed, duplex, and flow control.

3.1.4 PHY API Documentation

The 1G PHY API functions and structures are described within the chip API

documentation included in the API package (e.g., /doc/vtss_serval.pdf).

3.1.5 PHY Debug Print Functions

The API contains two functions to assist the debug process.

1. Calling vtss_phy_debug_stat_print will print the PHY statistics.

2. Calling vtss_phy_debug_phyinfo_print will print the internal PHY

information.

3.2 10G PHY Family

The 10G PHY family includes products listed for VTSS_CHIP_10G_PHY in the API

Targets table.

The individual PHYs are identified using a port number. Figure 5 shows two PHY

applications:

1. One single 10G PHY connected to a XAUI interface of a MAC inside a CPU. Both

the MAC interface and the MDIO Management interface of the PHY are

connected to the CPU.

2. Multiple 10G PHYs connected to a VTSS switch chip. Both the MAC interfaces

and the MDIO management interfaces of the PHYs are connected to the switch

chip.

The API contains examples of both application types as described in the Application

Examples section.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 15 of 29

Figure 5. 10G PHY Applications

The normal 10G PHY control sequence for each port is to set the PHY operating mode

using vtss_phy_10g_phy_mode. This function detects, resets, and sets the

operating mode of the PHY type.

3.3 Switch Families

The following illustration shows an example of a switch based on the Jaguar-1 product.

The system is a Layer 2 switch with 16 Cu ports and 4 SFP ports.

Figure 6. VSC7460 Jaguar-1 Application

For switch families, the initialization sequence is as follows:

1. Create a target using vtss_inst_get and vtss_inst_create

2. Initialize a target instance using vtss_init_conf_get and vtss_init_conf_set

3. Set up the port map table using vtss_port_map_set

4. Configure the switch ports

a. If PHYs are present, reset and configure PHYs

b. Configure ports using vtss_port_conf_get and vtss_port_conf_set

3.4 OTN Mapper Families

The following illustration shows a mapper application example based on the VSC8492

Daytona product. The line interfaces operate in XFI/SFI mode. The client interfaces

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 16 of 29

may operate in XAUI/SFI-4.2/TFI-5 host interface mode or XFI/SFI mode, depending

on the configuration mode of the device.

Figure 7. VSC8492 Daytona Application

Daytona

XAUI/

SFI4.2

/TFI5

XFI/

SFI

Line Interfaces

Client Interfaces

XFI/

SFI

XAUI/

SFI4.2

/TFI5

XFI/

SFI

XFI/

SFI

XFI/

SFI

XFI/

SFI

XFI/

SFI

XFI/

SFI

For Mapper families, the initialization sequence is as follows:

1. Create a target using vtss_inst_get and vtss_inst_create

2. Initialize a target instance using vtss_init_conf_get and vtss_init_conf_set

a. Set the mode of operation for each of the two channels.

Note: The Daytona mapper family can operate in one of many different

modes. Changing this mode will cause a re-initialization of the channel.

3. Setup the port map table using vtss_port_map_set

For Mapper families, a warm-start initialization sequence is as follows:

1. Implemented in a later release

The VSC8494 Talladega product is actually two Daytona dies in one chip. Therefore

this chip is treated as two separate chips, and as a consequence is also implemented

using two instances of the API as shown in the following figure.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 17 of 29

Figure 8. Talladega API

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 18 of 29

4 Function Groups
The following sections briefly list the most important API functions. The header files

include detailed descriptions on the data types and functions while the documentation

directory includes a document for each product family. These resources can be used to

study the API for a specific product.

Some general definitions are listed in vtss_api/include/vtss/api/options.h:

• Feature defines The selection of one or more targets at compile time

causes a number of symbols (VTSS_FEATURE_*) to be defined. These are

used to indicate which functions and data fields are available.

• Options Default values are assigned to compile time options (VTSS_OPT_*).

These default values may be overridden when building the API.

4.1 Initialization

Initialization functions are defined in include/vtss_init_api.h:

• Target creation

• Target initialization

These functions must be called before calling other functions for the target.

For targets supporting warm start, restart functions are also defined in

include/vtss_init_api.h.

4.2 Miscellaneous

Miscellaneous functions are defined in include/vtss_misc_api.h:

• Trace configuration and callback functions

• Debug print functions (for showing API internal information)

• API lock/unlock callback functions

• Register read/write (for debugging switch and OTN Mapper targets)

• Chip ID access (for switch and OTN Mapper targets)

• GPIO control (for switch and OTN Mapper targets)

• Interrupt control (switch and OTN Mapper targets)

4.3 Port Control

The file include/vtss_port_api.h defines port control functions for switch, MAC, and

OTN Mapper targets. Defined functions include the following:

• Port map (must be called after initializing switch and OTN Mapper targets)

• MMD management for 10G PHYs

• Auto negotiation, IEEE 802.3 clause 37

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 19 of 29

• Port configuration (speed, duplex, flow control, etc.) (for switch targets)

• Port status (for switch targets)

• Port statistics (for switch targets)

er targets, the configuration, status, and statics are organized per layer because the

relevant layer depends on the mode of operation.

The file include/vtss_phy_api.h defines PHY control functions that include the

following:

• PHY reset

• PHY configuration and status

• PHY power configuration and status

• Recovered clock configuration

• PHY register read/write functions

• VeriPHY (cable diagnostics)

The file include/vtss_phy_10g_api.h defines 10G PHY control functions that include the

following:

• 10G PHY operating mode and status

• 10G PHY sublayer status

• 10G PHY reset

• 10G PHY power on/off

• 10G PHY loopback

• 10G PHY counters

4.4 Quality of Service

The file include/vtss_qos_api.h defines QoS functions for switch targets. Defined

functions control the following:

• QCL: QoS classification rules

• Bandwidth control (policing and shaping)

• Egress scheduler

4.5 Packet Control

The file include/vtss_packet_api.h defines packet control functions for switch targets.

Defined functions control the following:

• CPU Rx packet registration and CPU queue mappings

• CPU Rx functions

• CPU Tx functions

Frame DMA functions are defined in the file include/vtss_fdma_api.h. These can only

be used from the internal CPU of the switch.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 20 of 29

• FDMA initialization and channel configuration.

• CPU Rx functions (frame extraction)

• CPU Tx functions (frame injection)

• FDMA statistics

4.6 Security

The file include/vtss_security_api.h defines security functions for switch targets.

Defined functions control the following:

• 802.1X state (switch targets)

• Access Control List (switch targets)

4.7 Layer 2

Layer 2 functions are defined in vtss_l2_api.h, which is used with switch targets.

• MAC address table (switch targets)

• Learning mode (switch targets)

• RSTP and MSTP state (switch targets)

• Virtual LAN (VLAN) membership and port configuration (switch targets)

• VCL: Advanced VLAN classification (switch targets)

• VLAN translation (switch targets)

• Port isolation (switch targets)

• Private VLANs (switch targets)

• Link aggregation (switch targets)

• Port Mirroring (switch targets)

• IPv4 multicast control (switch targets)

• IPv6 multicast control (switch targets)

• Port protection switching (switch targets)

• Ring protection switching (switch targets)

• Port forwarding state (switch targets)

• VStaX stacking configuration (switch targets)

4.8 EVC

Ethernet Virtual Connection functions are defined in the file vtss_evc_api.h.

4.9 Synchronization

Synchronization functions are defined in the file vtss_sync_api.h.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 21 of 29

4.10 Time Stamping

The file vtss_ts_api.h defines time stamping functions at the MAC layer for the Caracal

and Jaguar-1 switch families.

The file vtss_phy_ts_api.h defines time stamping functions at the PHY layer for devices

that support IEEE1588v2 such as the VSC8487-15, VSC8488-15, VSC8574, and

VSC8492. Functions control the following:

• 1-step and 2-step timestamping feature.

• Tx timestamp FIFO interface.

• Set/Get/Synchronize Time of Day.

• Adjust clock rate.

4.11 OTN Mapper Layers (OTN Mappers Only)

The API defines functions to control OTN Mappers such as the following:

• Interface control and monitoring (XFI and UPI layers)

• MAC control and monitoring(MAC and PCS layers)

• OTU/FEC control and monitoring

• WIS/SONET/SDH layer control and monitoring

• GFP mapping control and monitoring

• Backplane auto negotiation (AN), IEEE 802.3 clause 73

• Backplane adaptive equalization (AE), IEEE 802.3 clause 72

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 22 of 29

5 Application Examples

5.1 Platforms

The vtss_api/appl directory includes application examples demonstrating how to use

the API. The applications can be built to run the Vitesse platforms shown in the

following table.

The application can be built using the Linux “cmake” tool, or by compiling the files

below with the listed defines.

Refer also to chapter 6, if you are using the API running Linux on the internal CPU of a

switch chipset.

Table 3. Application Example Platforms

Platform Defines Application C Files

Switch application for SparX-
III-26 evaluation board.

Vitesse Genie board is running
Linux.

VTSS_CHIP_SPARX_III_26

VTSS_OPSYS_LINUX

BOARD_LUTON26_EVAL

vtss_appl.c

vtss_appl_cli.c

vtss_appl_board_l26_eval.c

Switch application for Jaguar-1
evaluation board

Vitesse Genie board is running
Linux

VTSS_CHIP_JAGUAR_1

VTSS_OPSYS_LINUX

BOARD_JAGUAR1_EVAL

vtss_appl.c

vtss_appl_cli.c

vtss_appl_board_jr1_eval.c

Switch application for Serval
reference board using VRAP.

Vitesse Genie board is running
Linux.

VTSS_CHIP_SERVAL

VTSS_OPSYS_LINUX

BOARD_SERVAL_REF

vtss_appl.c

vtss_appl_cli.c

vtss_appl_board_serval_ref.c

Cu PHY application for
VSC8512 evaluation board.

The application can run on a

Linux PC.

VTSS_CHIP_CU_PHY

VTSS_OPSYS_LINUX

VTSS_OPT_PORT_COUNT=12

vtss_appl_cu_phy.c

vtss_appl_board_atom12_eval.c

10G PHY application example
currently not targeting a
specific board.

VTSS_CHIP_10G_PHY

VTSS_CHIP_CU_PHY

VTSS_OPSYS_LINUX

VTSS_OPT_PORT_COUNT=12

vtss_appl_cu_phy.c

vtss_appl_board_atom12_eval.c

10G OTN Mapper application
example for Daytona.

Vitesse Genie board is running
Linux

VTSS_CHIP_DAYTONA

VTSS_OPSYS_LINUX

BOARD_DAYTONA

vtss_appl.c

vtss_appl_cli.c

vtss_appl_board_daytona.c

10G OTN Mapper application
example for Talladega.

Vitesse Genie board is running
Linux

VTSS_CHIP_TALLADEGA

VTSS_OPSYS_LINUX

BOARD_TALLADEGA

vtss_appl.c

vtss_appl_cli.c

vtss_appl_board_daytona.c

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 23 of 29

5.2 Switch Application Functionality

The switch portion of the application file, appl/vtss_appl.c, demonstrates basic

functionality such as the following:

• Trace system integration

• Initialization

• Port map setup

• Port reset and configuration

• Port status polling and configuration based on auto-negotiation

The board specific part of the application appl/vtss_appl_board_*.c includes the

following:

• Register access

• Port map

The application includes a Command Line Interface (CLI) found in appl/vtss_appl_cli.c

for configuration and monitoring of the system.

5.3 PHY Application Functionality

The PHY application file appl/vtss_appl_cu_phy.c initializes the PHYs on the target

board and demonstrates their use.

Use the following steps to set up the ATOM12 PHY device from a PC (either Linux or

Windows using CyWin) for use on the Vitesse Atom12 evaluation board.

1) Compile the API with the ATOM12 evaluation hardware platform and Linux OS

files.

Example:

gcc -g -o vtss_api.exe -I include \
appl/vtss_appl_board_atom12_eval.c \
appl/vtss_appl_cu_phy.c \
`find base/phy/ -name “*.c”`
-DVTSS_OPSYS_LINUX=1 \
-DVTSS_OPT_PORT_COUNT=12 \
-DVTSS_CHIP_CU_PHY

2) The Atom12 evaluation board uses a Vitesse add-on “Rabbit CPU board” which is

used to communicate with the PC and the PHY. Communication between the

Rabbit board and the PC is done using a socket connection, so the user must

specify the Rabbit board’s IP address. The IP address is set as an argument when

running the API program.

Example:

vtss_api.exe 10.10.132.59.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 24 of 29

5.4 OTN Mapper Application Functionality

The mapper application portion of the file, appl/vtss_appl.c, demonstrates basic

functions such as the following:

• Trace system integration

• Initialization

• Port map setup

• Port reset and configuration

The board specific portion of the file appl/vtss_appl_board_*.c includes the following:

• Register access

• Access to external components on the evaluation board through the MDIO

interface (i.e., VSC8486 PHY), and I2C (SFP+).

• Access to other external components on the evaluation board through the

Rabbit module.

The backplane AE (IEEE 802.3 clause 72) file appl/ae/*.c includes the following:

• Process for controlling the AE, using the API interface primitives for AE.

The application includes a CLI from the file appl/vtss_appl_cli.c for configuration and

monitoring of the system. CLI commands are implemented for all the API functions so

all API functions can be exercised from external scripts.

5.4.1 Port and Channel Numbering

The Daytona chip has two channels that connect a client side port with a line side port.

Each channel is nearly symmetric as the same features are available towards both

client and line side, centered about the Rate Adaptation buffer (RAB). Therefore, the

API treats the Daytona as 4 ports numbered 0 through 3 as shown in the following

illustration.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 25 of 29

Figure 9. Daytona and Talladega Channels and Ports

Daytona

Channel 0

RABPort 0 Port 2

Channel 1

RABPort 1 Port 3

Talladega

Channel 0

RAB
Inst 0,

Port 0

Inst 0,

Port 2

Channel 1

RAB
Inst 0,

Port 1

Inst 0,

Port 3

Channel 2

RAB
Inst 1,

Port 0

Inst 1,

Port 2

Channel 3

RAB
Inst 1,

Port 1

Inst 1,

Port 3

The API calls are converted to one or more register reads or writes implemented as

callouts from the API.

Example read callout function declaration:

/**
 * \brief Read value from target register.
 *
 * \param chip_no [IN] Chip number (if multi-chip instance).
 * \param addr [IN] Address to read. Byte offse t from chip address base.
 * \param value [OUT] Register value.
 *
 * \return Return code.
 **/
static vtss_rc reg_read(const vtss_chip_no_t chip_n o,
 const u32 addr,
 u32 *const value);

Where:

chip_no is not used (always 0)

addr is the register offset within the chip

The Talladega chip is treated as two Daytona chips, that is two API instances are

created and separate callouts are defined per instance. It has one callout for the

channel 0 and 1 portion of the chip and another callout for the channel 2 and 3 portion

of the chip.

The port_number from the API call is reflected in the addr parameter. Stated another

way, the API converts the port_number and function block to the proper register

address.

5.4.2 Register Access

The Mapper test application is made for both the Daytona evaluation board and the

Talladega evaluation board. The Talladega application creates two instances of the

API, one for channel 0 and 1 (die 0) and one for channel 2 and 3 (die 1). In the

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 26 of 29

reg_read and reg_write callout functions, the functions handling die 0 uses the addr

parameter directly. The callout functions handling die 1 sets bit 22 in the addr

parameter and uses the same register access function.

Example read callout function implementation for die 1:

static vtss_rc reg_read_die_1(const vtss_chip_no_t chip_no,
 const u32 addr,
 u32 *const value)
{
 /* chip die 1 is accessed by setting bit 22 in the address */
 addr |= 0x400000;
 reg_read(chip_no, addr, value);
 return rc;
}

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 27 of 29

6 Linux Support

6.1 External CPU configuration

The directory, linux_support/misc , contains example UIO drivers showcasing providing

register and interrupt access for running the API and the example application

described in chapter 5.

The drivers can be used to run the API on a Linux system with PCIe connections, for

example from a x86 Ubuntu 12.04 LTS system.

Other systems configurations and can be constructed in a similar fashion, replacing

PCIe with other bus options available on your target platforms.

6.2 Internal CPU configuration

If you are using the internal processor to run Linux, you may wish to use the Yocto-

based BSP that Vitesse provides. Refer to Application note AN1125, available from

your local Vitesse representative, for further description of the BSP.

Once you have the basic BSP compiling, you should add the meta-vtss-switch layer,

available from https://github.com/vtss/meta-vtss-switch. You will also need to obtain

a suitable API release tarball, which should be placed in recipes-applications/vtss-

api/files/. You will need release 4.60a or later.

After downloading the meta-vtss-switch layer and placing the tar archive, you must

add the layer to the <build-directory>/conf/bblayers.conf as below:

BBLAYERS ?= " \
 /home/<user>/project/poky/meta \
 /home/<user>/project/poky/meta-yocto \
 /home/<user>/project/poky/meta-yocto-bsp \
 /home/<user>/project/poky/meta-vtss-vcoreiii \
 /home/<user>/project/poky/meta-vtss-switch \
 "

With the new layer added, you can now build (bitbake) the “vtss-core-minimal ” target,

and produce a flash image containing the Vitesse Unified Switch API shared library as

well as the “vtss_miniapp ” example application.

Refer to AN1125 and https://www.yoctoproject.org/ for more information for more

information on Yocto and how to deploy the image on a target system.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 28 of 29

7 Porting Guide
This section summarizes the required steps to port the API to a given platform.

7.1 Board Support Package

For a given CPU system and OS, a board support package (BSP) must be developed.

Vitesse currently provides the following BSPs:

• VCore-III/eCos for SparX-III/Caracal/Jaguar reference systems

• VCore-III/Linux for SparX-III/Caracal/Jaguar reference systems

7.2 Build System

Create a build system to compile the OS, application, and Vitesse API. All C-files in the

vtss_api/base directory, including sub directories, must be compiled. Also set the

appropriate OS (VTSS_OPSYS_ECOS, VTSS_OPSYS_LINUX or VTSS_OS_CUSTOM) and target

(VTSS_CHIP_*) defines for the platform.

The file vtss_api/CMakeLists.txt is available to support the cmake tool.

7.3 OS Layer

When compiling for other than supported OS types, the Makefile must define the

VTSS_OS_CUSTOM C preprocessor symbol.

By doing so, the include file <vtss_os_custom.h> will be included to implement the OS

timer functions as described in Section 2.8. This file is not present in the distributed

source, but is reserved for OS porting purpose.

7.4 Register Access

For switch and OTN Mapper targets, register read/write functions must be

implemented.

For PHY targets the MII management read/write functions must be implemented.

7.5 API Protection

The vtss_callout_lock and vtss_callout_unlock functions must be implemented.

For single-threaded applications, these functions may be left empty.

7.6 Trace Layer

The vtss_callout_trace_printf and vtss_callout_trace_hex_dump functions must

be implemented if the application wants to use the API trace. Alternatively, set

VTSS_OPT_TRACE=0 in your build system to exclude the trace.

As the API is split into different groupings, it is possible to enable the trace feature

individually for each group. This is done with the vtss_trace_conf_set function.

 Vitesse API Software

 Application Note

Revision 1.8

March 2015 Vitesse Proprietary and Confidential Page 29 of 29

Refer to the specific chip API documentation included in the API package (e.g.,

doc/vtss_jaguar1.pdf).

7.7 Application

The application code must be developed, possibly using the Vitesse application

example code for reference. Include the file vtss_api/include/vtss_api.h to access the

Vitesse API. For switch targets, ensure that the port map is setup correctly.

