Author Archives: Hal Martin

About Hal Martin

In my free time I like experiment with hardware and embedded systems. Here I write about personal projects and random adventures into firmware land.

Resetting Supermicro X10 series BMC to factory defaults

If you’ve ever bought a used Supermicro motherboard and it came without the IPMI login reset to ADMIN/ADMIN, you may be wondering how you can reset IPMI to factory defaults without booting an OS.

Quick note before we continue: if you have an OS on the board, and have installed the IPMI tools for your OS, it’s easier to reset the IPMI username/password via those utilities than via the following method.

This method requires physical access and an SPI programmer like the ch341a or Raspberry Pi. A SOIC16 chip clip will also make life much easier. The ch341a and SOIC16 chip clip can be purchased online for <$10 USD from various sources (e.g. eBay, AliExpress).

Disclaimer: This information is provided without any warranty. Always take multiple physical backups of firmware before performing any modifications. I have only tested this on the Supermicro X10SLE-F motherboard as it is the only Supermicro board I own. However, looking at the REDFISH BMC update image available on Supermicro’s website, this method should be compatible with all X10 series motherboard BMC firmware.

To start, we need to locate the BMC flash. On my X10 board, this is an SOIC16 chip from MXIC with a capacity of 32MB (256MBit).

U53 (SOIC16, 256MBit) contains the BMC firmware, U5 (SOIC8, 128MBit) contains the BIOS

Dump the contents of the BMC firmware using flashrom (using ch341a_spi):

$ flashrom -p ch341a_spi -r BMC.bin

I always dump the flash twice and compare the dumps using a hashing algorithm like sha1 or sha256, to confirm that both dumps are identical.

If they are not identical, check your physical connection to the chip and whether something on the board is receiving power from your SPI programmer.

Using binwalk, find the JFFS2 region. In Supermicro X10 firmwares, this appears to be from 0x100000 to 0x400000:

$ binwalk BMC.bin
DECIMAL       HEXADECIMAL     DESCRIPTION
--------------------------------------------------------------------------------
109381        0x1AB45         Certificate in DER format (x509 v3), header length: 4, sequence length: 12291
109541        0x1ABE5         Certificate in DER format (x509 v3), header length: 4, sequence length: 12291
109777        0x1ACD1         Certificate in DER format (x509 v3), header length: 4, sequence length: 12291
109913        0x1AD59         Certificate in DER format (x509 v3), header length: 4, sequence length: 12291
110057        0x1ADE9         Certificate in DER format (x509 v3), header length: 4, sequence length: 12291
112368        0x1B6F0         CRC32 polynomial table, little endian
1048576       0x100000        JFFS2 filesystem, little endian
4194304       0x400000        CramFS filesystem, little endian, size: 11915264 version 2 sorted_dirs CRC 0xD6771DEA, edition 0, 6818 blocks, 1038 files
20971520      0x1400000       uImage header, header size: 64 bytes, header CRC: 0xC5F4666A, created: 2015-10-05 10:52:56, image size: 1537322 bytes, Data Address: 0x40008000, Entry Point: 0x40008000, data CRC: 0x677BDAA8, OS: Linux, CPU: ARM, image type: OS Kernel Image, compression type: gzip, image name: "21400000"
20971584      0x1400040       gzip compressed data, maximum compression, has original file name: "linux.bin", from Unix, last modified: 2015-10-05 10:49:39
24117248      0x1700000       CramFS filesystem, little endian, size: 5435392 version 2 sorted_dirs CRC 0x43329740, edition 0, 2071 blocks, 309 files

To reset to factory defaults, simply overwrite the JFFS2 region with 0:

$ dd if=/dev/zero of=BMC.bin bs=1 seek=1048576 count=3145728 conv=notrunc

Reflash the modified firmware:

$ flashrom -p ch341a_spi -w BMC.bin

When you power up the board again, the BMC will re-create the JFFS2 region with the default credentials of ADMIN/ADMIN.

Editing the JFFS2 partition instead of overwriting it with zeros seems to invalidate a checksum somewhere, and this causes the BMC to re-initialize the JFFS2 region on the next boot. For that reason, I wouldn’t recommend extracting and editing the JFFS2 region, just zero it out.

Note: you will lose any licensed features in the BMC by resetting it to defaults using this method. However, Peter Kleissner did an amazing job reverse engineering the Supermicro license validation code, and using his work you can generate an IPMI license for your BMC.

With the licensed BIOS upgrade feature of IPMI, you can update the BIOS without ever needing to boot an OS, very handy for when your CPU revision is unsupported by an old BIOS release or if the board happens to have a corrupt BIOS image.

It should also be noted that the Supermicro BIOS updates available from their website appear to be directly flashable to SPI. You’ll lose some SMBIOS information if you use an SPI programmer to write directly to the SOIC8 containing the BIOS, but it can also help resolve some strange issues encountered after the IPMI BIOS upgrade (example below).

I hope this information is useful to anyone trying to get into their Supermicro BMC. Of course, requiring physical access and an SPI programmer is never as easy as resetting the BMC passwords from software and carries some risk that you may corrupt the BMC firmware.


There’s a thread on ServeTheHome about this motherboard if you have any further questions.

6rd on Free

Today I will discuss how to configure 6rd on the French ISP Free, if you decide not to use the provided Freebox and instead use your own equipment.

Free has been deploying to their customers since 2007. They were one of the first major ISPs to provide customers with IPv6 connectivity. But providing IPv6 for such a long time means they have not always kept up with the latest innovations, and thus Free don’t provide services like DHCPv6 or native IPv6 on some circuits.

If you have FTTH (100/1000MBit), your Freebox will be using the fibre SFP provided during installation. If you instead have xDSL, it will use the included cable to connect directly to the phone line using the DSL port.

With the Freebox, you will have IPv4 and IPv6 connectivity without any effort. But, if you wish to use your equipment after the Freebox you must put it into “bridge” mode and suffer dual NAT. You will also be limited by the features of the Freebox and have to trust Free to keep it updated and safe from vulnerabilities.

Those who choose to use their own equipment must have a device compatible with an SFP adapter, and configure VLAN 836 to receive an IPv4 address via DHCP.

Since IPv6 is provided using IPv6-in-IPv4, further configuration is necessary.

If you are using Mikrotik equipment, detailed documentation exists on how to configure 6rd.

If you are using a Linux-based router (e.g. OpenWrt) the process is slightly different, though the principles remain the same.

Free has an IPv6 prefix of 2a01:e00::/26, with the prefix 2a01:e3a being used for 6rd. The first step to getting working 6rd, is to determine which 6rd gateway Free is using for your IP address. The simplest way to determine this, is to calculate your IPv6 address.

Note: Don’t bother buying a copper SFP and using it in the Freebox to man-in-the-middle the fibre connection with a switch mirror port. It won’t fit physically, and even if you find a way, the Freebox won’t recognize it. ¯\_(ツ)_/¯

Use the prefix 2a01:e3a + your Free IPv4 address in hexadecimal. For example, if your IPv4 address is 8.8.8.8, the first IPv6 subnet would be 2a01:e3a0:8080:8080::/64

Confirm that your IPv6 address calculation is correct by using an online tool to ping the ::1 IP address in this IPv6 subnet, while running tcpdump on your router and filtering for protocol 41. If you have calculated the IPv6 address correctly, you should see IPv4 encapsulated IPv6 packets reaching your router:

# tcpdump -i eth0.836 proto 41
07:29:54.229910 IP 192.88.99.101 > lns-bzn-30-XX-XX-XX-XXX.adsl.proxad.net: IP6 2600:3c01::f03c:91ff:fe93:48f8 > 2a01:e3A:ABBB:CCC1::1: ICMP6, echo request, seq 1, length 64

At this point, since we have not configured the 6rd tunnel, you should not expect to see any echo replies from the IPv6 address. Note the source IP address of the packet, this is the 6rd gateway from Free.

Before continuing, you need to add a firewall rule to allow protocol 41 through your firewall to the IP address of the Free 6rd gateway. From the above tcpdump output, the rules to add would be:

iptables -I zone_wan_input -i eth0 -p 41 -s 192.88.99.101 -j ACCEPT
iptables -I zone_wan_output -o eth0 -p 41 -d 192.88.99.101 -j ACCEPT

OpenWrt does include support for 6rd in Luci, but I was never able to have this configuration bring up a working 6rd tunnel. Instead I configured the tunnel manually in /etc/rc.local:

ip tunnel add 6rd mode sit remote 192.88.99.101 local 170.187.188.204
ip link set 6rd up
ip addr add 2a01:0e3A:ABBB:CCC0::1/64 dev 6rd
ip addr add 2a01:0e3A:ABBB:CCC1::1/64 dev br-lan
ip route add ::/0 dev 6rd

This is almost enough to have IPv6 connectivity working fully. However, your IPv6 routing will be broken, as this interface is manually created and doesn’t belong to the LAN or WAN zones.

To resolve this, go to the OpenWrt web GUI and create a new interface with the Unmanaged protocol, covering the 6rd interface. Assign the new interface to the WAN zone, and restart the firewall. IPv6 routing should now be functional.

You should also configure the LAN interface to have the Router Advertisement-Service and DHCPv6 Service in server mode. This will ensure clients receive an IPv6 address in the IPv6 subnet assigned to the LAN.

I recommend rebooting your OpenWrt router to ensure that your configuration is correctly applied on boot.

You can check that IPv6 is correctly configured correctly by using an online tool such as test-ipv6. If everything has been configured correctly, your test results should be positive!

IoT sensors and time series databases

In this article we are going to look at a few uses for low-cost sensors and how they can be combined with a time series database (TSDB) and a web front-end to easily visualize the data. For privacy reasons, I will describe a standalone use case where you have the time series database running on low-cost hardware such as a Raspberry Pi (or Chinese equivalent), so the data never leaves your house and the IoT sensors are not directly exposed to the internet.


Energy monitoring

The Sonoff POW is a $12 wireless relay that includes a power measurement IC capable of measuring energy consumption, voltage, current, etc.

The Sonoff POW is based on the ESP8266, and there are a number of third-party firmwares available which add additional functionality like support for MQTT, InfluxDB, Domoticz, Amazon Alexa, etc. The most popular third-party seems to be ESPurna, which is what I’m using.

ESPurna is not infallible, and does occasionally crash. When that happens, the relay cycles, disrupting power to whatever is connected. Since I’m monitoring things I don’t want to be randomly power cycled, I soldered across the relay to prevent it from shutting off the loads. This turns the Sonoff POW from a wireless relay with energy monitoring to simply an energy monitor. However for my purpose that’s fine.

Bypassing the relay in the Sonoff POW requires opening the case and soldering across the relay. Working on the Sonoff POW should only be done when it is not connected to AC (mains power)! After soldering, you should confirm with a multimeter that you have correctly bypassed the relay and not created a short circuit. There have been several iterations of the Sonoff POW PCB, so I cannot provide universal instructions on how to bypass the relay.

On the latest Sonoff POW hardware I own (purchased in mid-2017), you can bypass the relay by soldering a wire (shown in red) between the relay input and output:

The small gold coloured object is the shunt resistor used to measure the current consumed by the load. To keep the energy monitoring functionality intact, it is important that you only solder after the shunt resistor (to the left), not before (to the right), otherwise the shunt resistor will not be in series with the load and the measured current will be 0.


Environmental monitoring

The Wemos D1 mini is a “mini WiFi board” with a large number of “shields” incorporating various sensors or other expansion options.

I was drawn to the Wemos D1 mini because it is supported by MicroPython as well as ESPurna (though not for my intended use case). Since there are many shields available, you can just stack modules to get the desired functionality instead of messing around on a breadboard or soldering onto protoboard.

The Wemos D1 mini is also cheap, you can buy it from China for under $3 with free shipping (at least to the EU). The modules are also quite inexpensive when ordered from China, as long as you don’t mind waiting 4-6 weeks for delivery.

Since ESPurna only supports the Wemos D1 mini with the relay shield, and I wanted to do temperature/humidity/pressure monitoring, I decided to use MicroPython since it has the lowest barrier to entry. Flashing MicroPython on the Wemos D1 mini wasn’t too complicated, there is a forum thread describing how to flash it.

I created a simple python script to report the temperature and humidity to the InfluxDB server every minute. Overall it works well, the only issue I’ve run into is that there is no watchdog on the ESP8266, so if the urequests.post() fails for some reason (DNS resolution issue, packet loss, alignment of the stars) you have to manually reset the sensor using the reset button on the side.

Since these are just around my apartment, I added a “meatware monitoring” feature. When the POST is in progress, the LED on the Wemos is enabled. For a normal POST, the LED will just blink for around a second. If I walk past a sensor and notice the LED is on solid, I just press the reset button. This is not very “production ready” but I’m only monitoring the temperature and humidity for fun, so the motivation to resolve this bug is not very high. I will accept any pull requests to improve the functionality.


Time series database (TSDB)

Time series databases are a relatively new and hyped type of database, as you can probably gather from how incomplete the Wikipedia page is compared to relational databases.

For my application of 5 sensors reporting values every minute or so, there’s no reason a relational database like PostgreSQL couldn’t be used instead. But it’s helpful to learn a new technology, and InfluxDB offers some benefits over a relational database:

  • Engineered for time series data
  • HTTP API
  • collectd API

These are only scratching the surface of InfluxDB’s features, but the HTTP and collectd APIs reduced the amount of effort needed for this project. Otherwise I would have had to write an HTTP API to accept readings and insert them into a relational database. collectd is also useful to collect performance metrics from devices running Linux or BSD, but that’s beyond the scope of what I want to discuss today.

For the Sonoff running ESPurna, there’s no additional programming required as InfluxDB is supported by default. Simply enter the URL of your InfluxDB server’s HTTP API and wait for the sensors to report readings.


Visualising the data

Now, it’s great that we can send data to InfluxDB with very little effort via the HTTP API. We can of course run queries on the data from the influx cli, however this isn’t very useful for getting a quick impression of the data.

time value
---- -----
1512599873138880467 27.23
1512599933609113738 26.57
1512599994180436248 26.5
1512600054652895777 26.31
1512600115149476539 26.31
1512600175695516312 26.26
1512600256017317051 26.21
1512600316488957374 26.07
1512600376985207309 25.99
1512600437407006181 26.02

To visualise the data, I’ve chosen to use Grafana. Grafana is free software that you can use to visualise data from a variety of data sources such as OpenTSDB, InfluxDB, graphite, elasticsearch, and more.

Coupling Grafana with the InfluxDB data source from the Sonoff and the Wemos, we can build clever dashboards to visualise the sensor data:

Sonoff POW monitoring a fridge and microwave, you can see where the microwave was running

D1 Mini with SHT30 shield monitoring temperature and humidity,
can you see when the window was opened?


Security considerations
I would like to add that for security reasons if you are using any IoT devices at home, I would strongly recommend you consider isolating the devices to a separate WiFi access point and subnet to prevent them from communicating with devices on your main network. ISP supplied routers with a “Guest WiFi” mode should be capable of implementing this. Alternatively you can find inexpensive routers such as the Nexx WT3020H which support OpenWrt/LEDE and could be used to implement this.

You could in theory implement this on an SBC with WiFi supporting AP mode (such as the Orange Pi Zero), negating the need for a separate WiFi AP. However you are either faced with a SBC with very limited resources (the Orange Pi Zero has only 512MB of RAM), or an SBC with higher price than a Raspberry Pi with a WiFi router such as the Nexx WT3020H.


Tying it all together
We’ve looked at sensors, InfluxDB, and Grafana in this article. I haven’t mentioned until now that I’m running all of this on an Orange Pi PC, a small single board computer based on an Allwinner processor. For my use case, this hardware is low-energy, low-cost, and meets the performance needs of InfluxDB and Grafana.

There is nothing preventing you from running all of the above software on a different architecture (e.g. Docker on an x86). I chose ARM purely because I had the hardware available, and it is low power. If you’re building a monitoring system from scratch and your processing needs are not significant, then a SBC like the Raspberry Pi or Orange Pi PC is a very inexpensive server you can use with sensors.

I want to close by leaving some installation instructions if you are interested in implementing this yourself. This article is mostly just to inspire you to do your own projects, and is not a novel application of sensors, databases, or data visualization. So in this case, I will leave some links to other people who have written detailed instructions on how to install and configure InfluxDB and Grafana on ARM.